Discharge of lithium-ion batteries in salt solutions for safer storage, transport, and resource recovery

Author:

Torabian Mohammad Mahdi1,Jafari Milad1,Bazargan Alireza2ORCID

Affiliation:

1. Civil Engineering Department, K N Toosi University of Technology, Tehran, Iran

2. School of Environment, College of Engineering, University of Tehran, Tehran, Iran

Abstract

The use of lithium-ion batteries (LIBs) has grown in recent years, making them a promising source of secondary raw materials due to their rich composition of valuable materials, such as Cobalt and Nickel. Recycling LIBs can help reduce fossil energy consumption, CO2 emissions, environmental pollution, and consumption of valuable materials with limited supplies. On the other hand, the hazards associated with spent LIBs recycling are mainly due to fires and explosions caused by unwanted short-circuiting. The high voltage and reactive components of end-of-life LIBs pose safety hazards during mechanical processing and crushing stages, as well as during storage and transportation. Electrochemical discharge using salt solutions is a simple, quick, and inexpensive way to eliminate such hazards. In this paper, three different salts (NaCl, Na2S, and MgSO4) from 12% to 20% concentration are investigated as possible candidates. The effectiveness of discharge was shown to be a function of molarity rather than ionic strength of the solution. Experiments also showed that the use of ultrasonic waves can dramatically improve the discharge process and reduce the required time more than 10-fold. This means that the drainage time was reduced from nearly 1 day to under 100 minutes. Finally, a practical setup in which the tips of the batteries are directly immersed inside the salt solution is proposed. This creative configuration can fully discharge the batteries in less than 5 minutes. Due to the fast discharge rates in this configuration, sedimentation and corrosion are also almost entirely avoided.

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3