Microbial characteristics associated with six different organic wastes undergoing anaerobic decomposition in batch vial conditions

Author:

In Chul Kong 1

Affiliation:

1. Department of Environmental Engineering, Yeungnam University, Kyungbuk, Korea,

Abstract

In this study, the biodegradation characteristics of six plant-based wastes were compared in anaerobic batch vial systems. The highest gas accumulation and methane (CH4) concentrations (approximately 70%) were observed in samples containing copy paper, newspaper and box paper materials, whereas the lowest were observed in samples containing wood and leaves. In samples containing steamed rice and fruit, the methanogenic activity was inhibited, which resulted in acid accumulation. The high biodegradation activity of newspaper samples was also associated with high adenosine triphosphate levels and dehydrogenase activity. No significant differences were, however, observed in the dehydrogenase activity of the samples. High bioluminescence was observed in samples with high biodegradation activities, indicative of low toxicity.

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

Reference22 articles.

1. Barlaz, M.A. (1997) Microbial studies of landfills and anaerobic refuse decomposition. In Hurst C.J., et al. (eds): Manual of Environmental Microbiology, pp. 541-557. American Society for Microbiology, Washington, DC, USA.

2. Forest products decomposition in municipal solid waste landfills

3. Mass‐Balance Analysis of Anaerobically Decomposed Refuse

4. Methane production from municipal refuse: A review of enhancement techniques and microbial dynamics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3