Assessment of in situ properties of municipal solid waste with a large-diameter borehole method

Author:

Hartwell John1,Mousavi M Sina2,Eun Jongwan2ORCID,Bartelt-Hunt Shannon2

Affiliation:

1. SCS Engineers, Omaha, NE, USA

2. Department of Civil and Environmental Engineering, University of Nebraska–Lincoln, Omaha, NE, USA

Abstract

A Municipal Solid Waste Borehole Assessment (MBA) was developed to assess in situ geotechnical properties of municipal solid waste (MSW) during the boring of gas extraction well construction. A Large-Diameter Borehole Caliper (LDBC) was lowered into the borehole to measure the diameter and record the condition of the wall by time-lapse video photography. The results indicated that the borehole experienced significant radial compression with depth following completion. Radial compressions amounted to approximately 7.5% at 9.14 m, 10% at 21.3 m and 11% at 27.4 m below ground surface. The bulk modulus was estimated by using the captured volumetric strains and reported lateral earth coefficients, and the results showed that it increases with increasing depth. For MSW, the bulk modulus increased up to 13.4 MPa in a linear trend with depth. The unit weights of MSW were obtained using three diameter readings from LDBC, auger barrel outside diameter and outer cutting bit outside diameter. The results showed that the diameter based on outer cutting bit yielded realistic unit weights (5.08–9.68 kN m–3) due to unrealistic calculated saturations by other two assumed diameters. The borehole assessment with LDBC was shown to be an efficient and valuable means for characterising MSW and effectively designing gas extraction wells. The research provided a means to assess the waste mass with accuracy at great depths by directly observing and measuring borehole condition.

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3