On the industrial symbiosis of alumina and iron/steel production: Suitability of ferroalumina as raw material in iron and steel making

Author:

Karamoutsos Spiros12,Tzevelekou Theofani13,Christogerou Angeliki14,Grilla Eleni1,Gypakis Antonios5,Pérez Villarejo Luis6,Mantzavinos Dionissios14,Angelopoulos George N14ORCID

Affiliation:

1. Department of Chemical Engineering, University of Patras, Greece

2. Bianatt S.A., Greece

3. ELΚΕΜΕ, Hellenic Research Centre for Metals S.A., Greece

4. INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, Greece

5. General Secretariat for Research and Technology Athens, Greece

6. Department of Chemical, Environmental and Materials Engineering, University of Jaén, Spain

Abstract

The biggest challenge for our society, in order to foster the sustainable circular economy, is the efficient recycling of wastes from industrial, commercial, domestic and other streams. The transition to a circular economy is the goal of the European Commission’s Circular Economy Action, which was first launched in 2015. In 2020 the above action plan announced initiatives along the entire life cycle of the product, with the aim to make sustainable products the norm in the EU. Therefore, it is anticipated that the above action will result in an increase in Europe’s economic competitiveness, sustainability, resource efficiency and resource security. Within this context, the suitability of ferroalumina as a raw material in the blast furnace is investigated. Ferroalumina is the product of the high-pressure filter press dewatering process of the Greek red mud generated during the production of alumina by means of the Bayer cycle. Ferroalumina is a low-cost raw material and its possible charging in the blast furnace and/or steelmaking aggregates is a step towards industrial symbiosis, where the wastes, namely by-products, of an industry or an industrial process, become the raw materials for another. In the present work the effect of ferroalumina addition as a raw material was examined by smelting ferroalumina, blast furnace-slag, lime and scrap at 1550°C in a graphite crucible and a constant slag basicity. The increase of the alumina content in the slag improves the desulfurization capacity. Moreover, the silicon exchange between slag and metal was examined. The results indicate that the alkalis’ capacity of the slag increases with the addition of ferroalumina. The analysis of the finally obtained slag suggests that it could be suitable for utilization in slag-cement production.

Funder

programa operacional temático factores de competitividade

european regional development fund

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3