Petrochemical waste characterization and management at Pars Special Economic Energy Zone in the south of Iran

Author:

Ghazizade Mahdi Jalili1ORCID,Koulivand Habib2,Safari Edwin3,Heidari Leila2

Affiliation:

1. Department of Environmental Technologies, Environmental Sciences Research Institute (ESRI), Shahid Beheshti University (SBU), Iran

2. Environmental Sciences Research Institute (ESRI), Shahid Beheshti University (SBU), Iran

3. Comnipex Corporation, Canada

Abstract

Industrial waste management generated by different petrochemical complexes at Pars Special Economic Energy Zone, located in the south of Iran, was investigated. All 10 active petrochemical complexes were visited and generated wastes were identified by a checklist. Petrochemical plants were classified regarding feeds, process, and products and nine representative wastes were sampled. Physicochemical characteristics were analyzed and appropriate management approaches were proposed according to the literature review and the results of waste characterization. The generated wastes were classified as hazardous and non-hazardous according to the Basel Convention and Environmental Protection Agency lists of waste classification. Also, the concentrations of organic compounds and heavy metals were measured to classify wastes characteristically. Comparing concentrations of the most important heavy metals in sampled wastes illustrated that sandblast with Cu concentration of 4295 mg kg–1, spent activated carbon with Hg concentration of 127 mg kg–1, and spent catalyst with 25% Ni content can be categorized as hazardous wastes, due to the exceeding Total Threshold Limit Concentration levels. Based on laboratory results, all industrial waste generated in the petrochemical complexes were categorized into three groups, namely Organic Waste with High Calorific Value, Non-organic Recyclable Waste, and Non-organic Non-recyclable Waste. Finally, management approaches, including material recycling, energy recovery (through incineration), and landfilling, were proposed and a conceptual model was suggested in order to show different routes and final destination for each kind of waste generated in all similar petrochemical complexes.

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3