Classification of e-waste using machine learning-assisted laser-induced breakdown spectroscopy

Author:

Ali Zahid12,Jamil Yasir12ORCID,Anwar Hafeez2,Sarfraz Raja Adil3

Affiliation:

1. Laser Spectroscopy Lab, Department of Physics, University of Agriculture Faisalabad, Pakistan

2. Department of Physics, University of Agriculture Faisalabad, Pakistan

3. Department of Chemistry, University of Agriculture, Faisalabad, Pakistan

Abstract

Waste management and the economy are intertwined in various ways. Adopting sustainable waste management techniques can contribute to economic growth and resource conservation. Artificial intelligence (AI)-based classification is very crucial for rapid and contactless classification of metals in electronic waste (e-waste) management. In the present research work, five types of aluminium alloys, because of their extensive use in structural, electrical and thermotechnical functions in the electronics industry, were taken. Laser-induced breakdown spectroscopy (LIBS), a spectral identifier technique, was employed in conjunction with machine learning (ML) classification models of AI. Principal component analysis (PCA), an unsupervised ML classifier, was found incapable to differentiate LIBS data of alloys. Supervised ML classifier was then trained (for 10-fold cross-validation) on randomly selected 80% and tested on 20% spectral data of each alloy to assess classification capacity of each. In most of the tested variants of K nearest neighbour (kNN) the resulting accuracy was lower than 30% but kNN ensembled with random subspace method showed improved accuracy up to 98%. This study revealed that an AI-based LIBS system can classify e-waste alloys rather effectively in a non-contactless mode and could potentially be connected with robotic systems, hence, minimizing manual labour.

Funder

Pakistan Science Foundation

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3