Affiliation:
1. First Department of Neurology, National and Kapodistrian University, Aiginition Hospital, Athens, Greece
2. Maison Sofos Elderly Care Unit, Athens, Greece
3. 251 General Air-Force Hospital, Athens, Greece
Abstract
Objective: Our aim was to develop a machine learning algorithm based only on non-invasively clinic collectable predictors, for the accurate diagnosis of these disorders. Methods: This is an ongoing prospective cohort study ( ClinicalTrials.gov identifier NCT number NCT04448340) of 78 PDD and 62 DLB subjects whose diagnostic follow-up is available for at least 3 years after the baseline assessment. We used predictors such as clinico-demographic characteristics, 6 neuropsychological tests (mini mental, PD Cognitive Rating Scale, Brief Visuospatial Memory test, Symbol digit written, Wechsler adult intelligence scale, trail making A and B). We investigated logistic regression, K-Nearest Neighbors (K-NNs) Support Vector Machine (SVM), Naïve Bayes classifier, and Ensemble Model for their ability to predict successfully PDD or DLB diagnosis. Results: The K-NN classification model had an accuracy 91.2% of overall cases based on 15 best clinical and cognitive scores achieving 96.42% sensitivity and 81% specificity on discriminating between DLB and PDD. The binomial logistic regression classification model achieved an accuracy of 87.5% based on 15 best features, showing 93.93% sensitivity and 87% specificity. The SVM classification model had an accuracy 84.6% of overall cases based on 15 best features achieving 90.62% sensitivity and 78.58% specificity. A model created on Naïve Bayes classification had 82.05% accuracy, 93.10% sensitivity and 74.41% specificity. Finally, an Ensemble model, synthesized by the individual ones, achieved 89.74% accuracy, 93.75% sensitivity and 85.73% specificity. Conclusion: Machine learning method predicted with high accuracy, sensitivity and specificity PDD or DLB diagnosis based on non-invasively and easily in-the-clinic and neuropsychological tests.
Subject
Psychiatry and Mental health,Geriatrics and Gerontology,Neurology (clinical)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献