A Novel Machine Learning Algorithm Predicts Dementia With Lewy Bodies Versus Parkinson’s Disease Dementia Based on Clinical and Neuropsychological Scores

Author:

Bougea Anastasia1ORCID,Efthymiopoulou Efthymia12,Spanou Ioanna3ORCID,Zikos Panagiotis3

Affiliation:

1. First Department of Neurology, National and Kapodistrian University, Aiginition Hospital, Athens, Greece

2. Maison Sofos Elderly Care Unit, Athens, Greece

3. 251 General Air-Force Hospital, Athens, Greece

Abstract

Objective: Our aim was to develop a machine learning algorithm based only on non-invasively clinic collectable predictors, for the accurate diagnosis of these disorders. Methods: This is an ongoing prospective cohort study ( ClinicalTrials.gov identifier NCT number NCT04448340) of 78 PDD and 62 DLB subjects whose diagnostic follow-up is available for at least 3 years after the baseline assessment. We used predictors such as clinico-demographic characteristics, 6 neuropsychological tests (mini mental, PD Cognitive Rating Scale, Brief Visuospatial Memory test, Symbol digit written, Wechsler adult intelligence scale, trail making A and B). We investigated logistic regression, K-Nearest Neighbors (K-NNs) Support Vector Machine (SVM), Naïve Bayes classifier, and Ensemble Model for their ability to predict successfully PDD or DLB diagnosis. Results: The K-NN classification model had an accuracy 91.2% of overall cases based on 15 best clinical and cognitive scores achieving 96.42% sensitivity and 81% specificity on discriminating between DLB and PDD. The binomial logistic regression classification model achieved an accuracy of 87.5% based on 15 best features, showing 93.93% sensitivity and 87% specificity. The SVM classification model had an accuracy 84.6% of overall cases based on 15 best features achieving 90.62% sensitivity and 78.58% specificity. A model created on Naïve Bayes classification had 82.05% accuracy, 93.10% sensitivity and 74.41% specificity. Finally, an Ensemble model, synthesized by the individual ones, achieved 89.74% accuracy, 93.75% sensitivity and 85.73% specificity. Conclusion: Machine learning method predicted with high accuracy, sensitivity and specificity PDD or DLB diagnosis based on non-invasively and easily in-the-clinic and neuropsychological tests.

Publisher

SAGE Publications

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3