Wave Propagation in Periodic Stiffened Shells: Spectral Finite Element Modeling and Experiments

Author:

Solaroli G.1,Gu Z.2,Baz A.2,Ruzzene M.3

Affiliation:

1. Dipartimento di Meccanica, Politecnico di Torino, 10129 Torino, Italy

2. Mechanical Engineering Department, University of Maryland, College Park, MD 20742, USA

3. School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

Abstract

The capability of periodic structures to act as filters for propagating waves is used to control the propagation of waves in thin shells. The shells are stiffened by periodically placed rings in order to generate periodic discontinuities in the stiffness and inertial spatial distribution along the longitudinal axes of these shells. Such discontinuities result in attenuation of the wave propagation over certain frequency bands called stop bands. A distributed-parameter approach is used to derive a spectral finite element model of the periodically stiffened shell. The model accurately describes the dynamic behavior of the shell using a small number of elements. The stiffening rings, modeled using the curved beam theory, are considered as lumped elements whose mass and stiffness matrices are combined with those of the shell. The resulting dynamic stiffness matrix of the ring-stiffened shell element is used to predict the wave propagation dynamics in the structure. In particular, the shell propagation constants are determined by solving a polynomial eigenvalue problem, as a numerically robust alternative to the traditional transfer matrix formulation. The study of the propagation constants shows that the discontinuity introduced by the stiffeners generates the typical stop/pass band pattern of periodic structures. The location and width of the stop bands depend on the spacing and geometrical parameters of the rings. The existence of the stop bands, as predicted from the analysis of the propagation constants, is verified experimentally. Excellent agreement between theoretical predictions and experimental results is achieved. The presented theoretical and experimental techniques provide viable means for designing periodically stiffened shells with desired attenuation and filtering characteristics.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Reference14 articles.

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3