Affiliation:
1. Department of Engineering Science and Mechanics, MC 0219, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
Abstract
In this paper, we show that, in rotary cranes, it is possible to reduce payload pendulations significantly by controlling the crane's translational and rotational degrees of freedom. Such a control can be achieved with the heavy equipment that is already part of the crane, so that retrofitting existing cranes with such a controller would require little effort. Moreover, the control is superimposed transparently on the commands of the operator. The successful control strategy is based on delayed position feedback of the payload's in-plane and out-of-plane motions. Its effectiveness is demonstrated with a fully nonlinear three-dimensional computer simulation and with an experiment on a scaled model of a rotary crane. The results demonstrate that the pendulations can be significantly reduced, and therefore the rate of operation can be greatly increased. The effectiveness of the controller is demonstrated for both rotary and gantry modes of operation.
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献