Control of Sound Radiation of an Active Constrained Layer Damping Plate/Cavity System Using the Structural Intensity Approach

Author:

Azzouz Mohamed S.1,Ro J.2

Affiliation:

1. Aerospace Engineering Department, Old Dominion University, Norfolk, VA 23529, USA

2. Mechanical Engineering Department, Dayeh University, Chuanghwa, 51505, Taiwan

Abstract

Considerable attention has been devoted to actively and passively controlling the sound radiation from vibrating plates into closed cavities. With the advent of smart materials, extensive effort has been exerted to control the vibration and sound radiation from flexible plates using smart sensors/actuators. The Active Constrained Layer Damping (ACLD) treatment has been used successfully for controlling the vibration of various flexible structures. The treatment provides an effective means for augmenting the simplicity and reliability of passive damping with the low weight and high efficiency of active controls to attain high damping characteristics over broad frequency bands. This study investigates a numerically simulated example consisting of an ACLD treated plate/acoustic cavity system excited by a point harmonic force. In this study, an ACLD treated plate/acoustic cavity coupled finite element model is utilized to calculate the structural intensity and sound pressure radiated by the vibrating plates. In the passive control, the optimum placement of ACLD patches is determined by the structural intensity of ACLD treated plates and compared to the results obtained by using the strain energy approach. The influence on the structural intensity of the plate due to the damping treatment is investigated.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3