Estimating Ideal Points of Newspapers from Editorial Texts

Author:

Kaneko Tomoki1ORCID,Asano Taka-aki1ORCID,Miwa Hirofumi2ORCID

Affiliation:

1. The University of Tokyo, Tokyo, Japan

2. Gakushuin University, Tokyo, Japan

Abstract

Although measuring the ideal points of news media is essential for testing political communication theories based on spatial theory, prior methods of estimating ideal points of media outlets have various shortcomings, including high cost in terms of time and human resources and low applicability to different countries. We propose that unsupervised machine learning techniques for text data, specifically the combination of a text scaling method and latent topic modeling, can be applied to estimate ideal points of media outlets. We applied our proposed methods to editorial texts of ten national and regional newspapers in Japan, where prior approaches are not applicable because newspapers have never officially endorsed particular parties or candidates, and because high-quality training data for supervised learning are not available. Our two studies, one of which analyzed editorials on a single typically ideological topic while the other investigated all editorials published by the target papers in one year, confirmed the popular view of Japanese newspapers’ ideological slant, which validates the effectiveness of our proposed approach. We also illustrate that our methods allow scholars to investigate which issues are closely related to the respective ideological positions of media outlets. Furthermore, we use the estimated ideal points of newspapers to show that Japanese people partially tend to read ideologically like-minded newspapers and follow such newspapers’ Twitter accounts even though their slant is not explicit.

Funder

Japan Society for the Promotion of Science

Publisher

SAGE Publications

Subject

Sociology and Political Science,Communication

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3