Advances in understanding combustion phenomena using non-premixed and partially premixed counterflow flames: A review

Author:

Ravikrishna RV1,Sahu AB1ORCID

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India

Abstract

Counterflow flames provide an ideal platform for understanding the flame structure and as a model to study the effect of physical and chemical perturbations on the flame structure. This article reviews the advances made in the understanding of combustion dynamics and chemistry through experimental and numerical studies in counterflow non-premixed and partially premixed flames. Key contributions on fundamental aspects such as extinction, ignition and effect of perturbations on the stability of diffusion flames are first summarized and analysed. The review then focuses on the progress made in the understanding of the effect of inert particles and flame suppressants on the flame characteristics. A review of detailed studies on edge flames facilitates further understanding of local quenching and re-ignition phenomena in highly turbulent flames. The influence of radiation model and unsteady flow-conditions on the flame kinetics and dynamics along with work on NOx kinetics has been discussed. The review also outlines that specific experiments need to be carried out over a wide range of conditions for further understanding and validation of numerical models.

Publisher

SAGE Publications

Subject

General Physics and Astronomy,Automotive Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3