Affiliation:
1. Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, USA
Abstract
Recent years have witnessed a significant growth in the advancement and study of various unsteady combustors because of the prospective stagnation pressure gain offered by them. The pressure gain combustion produced by this class of combustors is poised to produce a step-change increase in the thermodynamic efficiency of gas-turbine engines. The current manuscript is oriented toward presenting a review on the pollutant emission characteristics of these devices; specifically, studies done so far on wave rotor combustors, pulsejet combustors, pulse detonation combustors, and rotating detonation combustors are evaluated. Because of the inherent fluid dynamic unsteadiness peculiar to pressure gain combustion devices, their emissions behavior is not well understood, and is notably different from the more conventional, steady combustors. The global view provided herein is expected to further the understanding of pressure gain combustion systems and ascertain the practicality of implementing them in real-world applications.
Subject
General Physics and Astronomy,Automotive Engineering,Energy Engineering and Power Technology
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献