Numerical prediction of the ignition probability of a lean spray burner

Author:

Palanti Lorenzo1,Andreini Antonio1ORCID,Facchini Bruno1

Affiliation:

1. Department of Industrial Engineering (DIEF), University of Florence, Florence, Italy

Abstract

The optimization of the igniter position is a critical issue in modern aviation gas turbines since it can help to minimize the amount of energy required for ignition and to guarantee a fast relight in case of flameout. From a numerical perspective, several spark discharges should be simulated for each spark position, to account for different realizations due to time-dependent turbulent motions. Unfortunately, standard simulations are impractical to use for this purpose, due to the need of carrying out several unsteady simulations, leading to a huge associated computational effort. This is why low-order models have been developed, providing an affordable estimation of the local ignition probability, by sacrificing the accuracy and the physical consistency of the prediction. In the present work, a previously developed low-order design model has been implemented in ANSYS Fluent 2019R1® and used to investigate the ignition performance of a single-sector, confined spray flame, where data from laser ignition experiments are available. A non-reactive Large Eddy Simulation, which is validated against experimental data, provides the base flow needed to feed the model. If the tuning parameters of the ignition model are well calibrated, it provides quite good results. In the test case here investigated, it is shown that ignition is possible in the outer recirculation zone and very unlikely elsewhere. Later, a discussion about the effect of the most relevant tuning parameters is carried out. It is shown that the model mostly succeed to identify the area of possible ignition, even if the lack of calibration could lead to a poorer agreement with the experimental data.

Funder

H2020 Transport

Publisher

SAGE Publications

Subject

General Physics and Astronomy,Automotive Engineering,Energy Engineering and Power Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3