Experimental investigations of ion current in liquid-fuelled gas turbine combustors

Author:

Wollgarten J Christopher1,Zarzalis Nikolaos1,Turrini Fabio2,Peschiulli Antonio3

Affiliation:

1. Engler-Bunte Institute, Karlsruhe Institute of Technology (KIT), Germany

2. Combustion Department, GE-AVIO, Italy

3. Combustion Department, GE AVIO, Italy

Abstract

This work covers investigations of the static and dynamic behaviour of a confined, co-swirled and liquid-fuelled airblast injection system. The focus lies on the application of ion current sensors for the qualitative measurement of the heat release rate or for flame monitoring purposes in complex technical combustion processes. The ion current sensor is to operate in a feedback control loop in order to react on combustion dynamics in real time. The first part of the work analyses experimental data, which were obtained with different techniques, e.g. dynamic pressure, chemiluminescence, fine-wire thermocouples and ion current. The results show that the thermo-acoustic instability and the precessing vortex core generate an interaction mode. The frequency of this interaction mode is the difference of the other two modes. This has not yet been observed for partially premixed and liquid-fuelled injection systems before and also was not detected by the chemiluminescence of the flame. The ion current measurement technique is able to detect the helical mode of the precessing vortex core as well as the interaction frequency, leading to the conclusion that the chemical reactions are influenced by this helical structure. Contour maps of the frequencies reveal this influence in the outer shear layer. The second part of the study focused on the ion current probe as a method to predict static combustion instabilities, such as lean blowout. According to the results, the ion current is a fast responding method to detect lean blowout, provided that the detector is mounted at a suitable position. Measurements at different positions in the flame were compared with phase-locked chemiluminescence measurements. Precursors in the ion current signal for lean-blowout prediction were found using a statistical approach, which is based on ion peak distance. The precursor events allow for the use of this approach with a feedback control loop in future applications.

Funder

Seventh Framework Programme

Publisher

SAGE Publications

Subject

General Physics and Astronomy,Automotive Engineering,Energy Engineering and Power Technology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3