Progress towards accelerating HOMME on hybrid multi-core systems

Author:

Carpenter I.1,Archibald R.K.2,Evans K.J.2,Larkin J.3,Micikevicius P.4,Norman M.2,Rosinski J.5,Schwarzmeier J.6,Taylor M.A.7

Affiliation:

1. National Renewable Energy Laboratory, Golden, CO, USA

2. Oak Ridge National Laboratory, Oak Ridge, TN, USA

3. Cray Inc., Oak Ridge, TN, USA

4. NVIDIA, Santa Clara, CA, USA

5. National Oceanic and Atmospheric Administration, Boulder, CO, USA

6. Cray Inc., Chippewa Falls, WI, USA

7. Sandia National Laboratories, Albuquerque, NM, USA

Abstract

The suitability of a spectral element based dynamical core (HOMME) within the Community Atmospheric Model (CAM) for GPU-based architectures is examined and initial performance results are reported. This work was done within a project to enable CAM to run at high resolution on next-generation, multi-petaflop systems. The dynamical core is the present focus because it dominates the performance profile of our target problem. HOMME enjoys good scalability due to its underlying cubed-sphere mesh with full two-dimensional decomposition and the localization of all computational work within each element. The thread blocking and code changes that allow HOMME to effectively use GPUs are described along with a rewritten vertical remapping scheme, which improves performance on both CPUs and GPUs. Validation of results in the full HOMME model is also described. We demonstrate that the most expensive kernel in the model executes more than three times faster on the GPU than the CPU. These improvements are expected to provide improved efficiency when incorporated into the full model that has been configured for the target problem. Remaining issues affecting performance include optimizing the boundary exchanges for the case of multiple spectral elements being computed on the GPU.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3