Priority research directions for in situ data management: Enabling scientific discovery from diverse data sources

Author:

Peterka Tom1ORCID,Bard Deborah2,Bennett Janine C3,Bethel E Wes4,Oldfield Ron A5,Pouchard Line6ORCID,Sweeney Christine7,Wolf Matthew8

Affiliation:

1. Argonne National Laboratory, Lemont, IL, USA

2. National Energy Research Scientific Computing Center, Berkeley, CA, USA

3. Sandia National Laboratories, Livermore, CA, USA

4. Lawrence Berkeley National Laboratory, Berkeley, CA, USA

5. Sandia National Laboratories, Albuquerque, NM, USA

6. Brookhaven National Laboratory, Upton, NY, USA

7. Los Alamos National Laboratory, Los Alamos, NM, USA

8. Oak Ridge National Laboratory, Oak Ridge, TN, USA

Abstract

In January 2019, the US Department of Energy, Office of Science program in Advanced Scientific Computing Research, convened a workshop to identify priority research directions (PRDs) for in situ data management (ISDM). A fundamental finding of this workshop is that the methodologies used to manage data among a variety of tasks in situ can be used to facilitate scientific discovery from many different data sources—simulation, experiment, and sensors, for example—and that being able to do so at numerous computing scales will benefit real-time decision-making, design optimization, and data-driven scientific discovery. This article describes six PRDs identified by the workshop, which highlight the components and capabilities needed for ISDM to be successful for a wide variety of applications—making ISDM capabilities more pervasive, controllable, composable, and transparent, with a focus on greater coordination with the software stack and a diversity of fundamentally new data algorithms.

Funder

U.S. Department of Energy

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards elastic in situ analysis for high-performance computing simulations;Journal of Parallel and Distributed Computing;2023-07

2. Adaptive elasticity policies for staging-based in situ visualization;Future Generation Computer Systems;2023-05

3. Uniform-in-phase-space data selection with iterative normalizing flows;Data-Centric Engineering;2023

4. Software tools to enable immersive simulation;Engineering with Computers;2022-08-26

5. Colza: Enabling Elastic In Situ Visualization for High-performance Computing Simulations;2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS);2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3