Tree-based convolutional neural networks for object classification in segmented satellite images

Author:

Robinson Y Harold1,Vimal S2,Khari Manju3,Hernández Fernando Carlos López4ORCID,Crespo Rubén González4

Affiliation:

1. School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, India

2. Department of IT, National Engineering College, Kovilpatti, Tamil Nadu, India

3. Department of CSE, Ambedkar Institute of Advanced Communication Technologies & Research, Delhi, India

4. Department of Computer Science, School of Engineering and Technology, International University of La Rioja, Logroño, La Rioja, Spain

Abstract

Satellite images have a very high resolution, which make their automatic processing computationally costly, and they suffer from artifacts making their processing difficult. This paper describes a method for the effective semantic segmentation of satellite images, and compares different object classifiers in terms of accuracy and execution time. In the paper, the image spectrum is used to reduce the computational cost during the segmentation and classification steps. Firstly, artifacts are corrected from the satellite images for facilitating the feature extraction process. After this, semantic representation is used to gather the semantic regions of downscaled images. As the images are very large, this scaling down significantly reduces the computing time with little degradation in the coarse object detection results. A deep neural forest classifier finds potential regions before executing the pixel-based segmentation. Finally, in our experiments, boundary detection and several classifiers are evaluated to find the objects associated with these regions. The paper details the set-up for our tree-based convolutional neural network. The results indicate that this tree-based convolutional neural network outperforms the other surveyed techniques in the literature.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3