Understanding performance variability in standard and pipelined parallel Krylov solvers

Author:

Morgan Hannah1ORCID,Sanan Patrick2,Knepley Matthew3,Mills Richard Tran1

Affiliation:

1. Argonne National Laboratory, Lemont, IL, USA

2. ETH Zurich, Zurich, Switzerland

3. University at Buffalo, Buffalo, NY, USA

Abstract

In this work, we collect data from runs of Krylov subspace methods and pipelined Krylov algorithms in an effort to understand and model the impact of machine noise and other sources of variability on performance. We find large variability of Krylov iterations between compute nodes for standard methods that is reduced in pipelined algorithms, directly supporting conjecture, as well as large variation between statistical distributions of runtimes across iterations. Based on these results, we improve upon a previously introduced nondeterministic performance model by allowing iterations to fluctuate over time. We present our data from runs of various Krylov algorithms across multiple platforms as well as our updated non-stationary model that provides good agreement with observations. We also suggest how it can be used as a predictive tool.

Funder

Office of Science

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3