A machine learning approach for accelerating DNA sequence analysis

Author:

Memeti Suejb1,Pllana Sabri1

Affiliation:

1. Department of Computer Science, Linnaeus University, Sweden

Abstract

The DNA sequence analysis is a data and computationally intensive problem and therefore demands suitable parallel computing resources and algorithms. In this paper, we describe an optimized approach for DNA sequence analysis on a heterogeneous platform that is accelerated with the Intel Xeon Phi. Such platforms commonly comprise one or two general purpose host central processing units (CPUs) and one or more Xeon Phi devices. We present a parallel algorithm that shares the work of DNA sequence analysis between the host CPUs and the Xeon Phi device to reduce the overall analysis time. For automatic worksharing we use a supervised machine learning approach, which predicts the performance of DNA sequence analysis on the host and device and accordingly maps fractions of the DNA sequence to the host and device. We evaluate our approach empirically using real-world DNA segments for human and various animals on a heterogeneous platform that comprises two 12-core Intel Xeon E5 CPUs and an Intel Xeon Phi 7120P device with 61 cores.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parallel DNA sequencing with exact and approximate string-matching algorithms;2023 XXIX International Conference on Information, Communication and Automation Technologies (ICAT);2023-06-11

2. DNA Sequencing using M achine L earning and D eep L earning A lgorithms;International Journal of Innovative Technology and Exploring Engineering;2022-09-30

3. Matching Pattern in DNA Sequences Using Machine Learning Approach Based on K-Mer Function;Studies in Computational Intelligence;2022

4. Optimization of heterogeneous systems with AI planning heuristics and machine learning: a performance and energy aware approach;Computing;2021-10-19

5. A Review on Machine Learning and Deep Learning Techniques Applied to Liquid Biopsy;Liquid Biopsy;2019-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3