Cellular Automata for Distributed Sensor Networks

Author:

Allegretti Dylan G.1,Kenyon Garrett T.2,Priedhorsky William C.3

Affiliation:

1. P Division, Los Alamos National Laboratory, Los Alamos, NM 87545

2. P Division, Los Alamos National Laboratory, Los Alamos, NM 87545,

3. Threat Reduction Directorate, Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract

Distributed Sensor Networks (DSNs) may be useful for detecting and tracking moving objects. Although such systems have important surveillance and homeland security applications, several technical problems exist. The cheap, low-powered sensors necessary for deployment over large areas may function poorly in low signal-to-noise environments. Although combining information from multiple sensors improves detection capabilities, long-range communication with a central computer may exhaust local power resources. We consider cellular automata rules that address these problems. By communicating locally, sensors can accurately track a moving object in a noisy environment. By communicating anonymously, they can use low-powered radio transmitters and receivers and avoid complex digital communication protocols. Our computer simulations show that DSNs can use cellular automata to greatly enhance the detection capabilities of individual sensors and reduce the amount of long-range communication by an order of magnitude.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nature-Inspired Computing for Autonomic Wireless Sensor Networks;Large Scale Network-Centric Distributed Systems;2013-10-25

2. A Transferring Protocol using Local Information on Ad Hoc Sensor Network and Its Behaviors;International Journal of Networking and Computing;2013

3. DI-GEP: A New Lifetime Extending Algorithm for Target Tracking in Wireless Sensor Networks;International Journal of Distributed Sensor Networks;2012-03-01

4. Light-Weight Target Tracking in Dense Wireless Sensor Networks;2009 Fifth International Conference on Mobile Ad-hoc and Sensor Networks;2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3