Scientific Application Performance On Leading Scalar and Vector Supercomputering Platforms

Author:

Oliker Leonid1,Canning Andrew2,Carter Jonathan2,Shalf John2,Ethier Stéphane3

Affiliation:

1. CRD/NERSC, LAWRENCE BERKELEY NATIONAL LABORATORY, BERKELEY, CA 94720,

2. CRD/NERSC, LAWRENCE BERKELEY NATIONAL LABORATORY, BERKELEY, CA 94720

3. PRINCETON PLASMA PHYSISCS LABORATORY, PRINCETON UNIVERSITY, PRINCETON, NJ 08453

Abstract

The last decade has witnessed a rapid proliferation of superscalar cache-based microprocessors to build high-end computing (HEC) platforms, primarily because of their generality, scalability, and cost effectiveness. However, the growing gap between sustained and peak performance for full-scale scientific applications on conventional supercomputers has become a major concern in high performance computing, requiring significantly larger systems and application scalability than implied by peak performance in order to achieve desired performance. The latest generation of custom-built parallel vector systems have the potential to address this issue for numerical algorithms with sufficient regularity in their computational structure. In this work we explore applications drawn from four areas: magnetic fusion (GTC), plasma physics (LB-MHD-3D), astrophysics (Cactus), and material science (PARATEC). We compare performance of the vector-based Cray X1, X1E, Earth Simulator, NEC SX-8, with performance of three leading commodity-based super-scalar platforms utilizing the IBM Power3, Intel Itanium2, and AMD Opteron processors. Our work makes several significant contributions: a new data-decomposition scheme for GTC that (for the first time) enables a breakthrough of the teraflop barrier; the introduction of a new three-dimensional lattice Boltzmann magneto-hydrodynamic implementation used to study the onset evolution of plasma turbulence that achieves over 26 Tflop/s on 4800 ES processors; the highest per processor performance (by far) achieved by the full-production version of the Cactus ADM-BSSN; and the largest PARATEC cell size atomistic simulation to date. Overall, results show that the vector architectures attain unprecedented aggregate performance across our application suite, demonstrating the tremendous potential of modern parallel vector systems.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3