Fitness evaluation reuse for accelerating GPU-based evolutionary induction of decision trees

Author:

Jurczuk Krzysztof1ORCID,Czajkowski Marcin1,Kretowski Marek1

Affiliation:

1. Faculty of Computer Science, Bialystok University of Technology, Bialystok, Poland

Abstract

Decision trees (DTs) are one of the most popular white-box machine-learning techniques. Traditionally, DTs are induced using a top-down greedy search that may lead to sub-optimal solutions. One of the emerging alternatives is an evolutionary induction inspired by the biological evolution. It searches for the tree structure and tests simultaneously, which results in less complex DTs with at least comparable prediction performance. However, the evolutionary search is computationally expensive, and its effective application to big data mining needs algorithmic and technological progress. In this paper, noting that many trees or their parts reappear during the evolution, we propose a reuse strategy. A fixed number of recently processed individuals (DTs) is stored in a so-called repository. A part of the repository entry (related to fitness calculations) is maintained on a CPU side to limit CPU/GPU memory transactions. The rest of the repository entry (tree structures) is located on a GPU side to speed up searching for similar DTs. As the most time-demanding task of the induction is the DTs’ evaluation, the GPU first searches similar DTs in the repository for reuse. If it fails, the GPU has to evaluate DT from the ground up. Large artificial and real-life datasets and various repository strategies are tested. Results show that the concept of reusing information from previous generations can accelerate the original GPU-based solution further. It is especially visible for large-scale data. To give an idea of the overall acceleration scale, the proposed solution can process even billions of objects in a few hours on a single GPU workstation.

Funder

Polish Ministry of Science and Higher Education

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3