Real-Time Statistical Clustering for Event Trace Reduction

Author:

Nickolayev Oleg Y.1,Roth Philip C.2,Reed Daniel A.3

Affiliation:

1. ORACLE CORPORATION, REDWOOD SHORES, CA 94065

2. MCSB TECHNOLOGY, EAU CLAIRE, WI 54701

3. DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, IL 61801

Abstract

Event tracing provides the detailed data needed to under stand the dynamics of interactions among application resource demands and system responses. However, cap turing the large volume of dynamic performance data inherent in detailed tracing can perturb program execution and stress secondary storage systems. Moreover, it can overwhelm a user or performance analyst with potentially irrelevant data. Using the Pablo performance environ ment's support for real-time data analysis, we show that dynamic statistical data clustering can dramatically reduce the volume of captured performance data by identifying and recording event traces only from representative proc essors. In turn, this makes possible low overhead, interac tive visualization, and performance tuning.

Publisher

SAGE Publications

Subject

General Engineering,General Computer Science

Reference14 articles.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Practical multiverse debugging through user-defined reductions;Proceedings of the 25th International Conference on Model Driven Engineering Languages and Systems;2022-10-23

2. IncProf: Efficient Source-Oriented Phase Identification for Application Behavior Understanding;2022 IEEE International Conference on Cluster Computing (CLUSTER);2022-09

3. Efficient clustering for ultra-scale application tracing;Journal of Parallel and Distributed Computing;2016-12

4. Performance Analytics: Understanding Parallel Applications Using Cluster and Sequence Analysis;Tools for High Performance Computing 2013;2014

5. Visualizing More Performance Data Than What Fits on Your Screen;Tools for High Performance Computing 2012;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3