Memory Management Issues in Sparse Multifrontal Methods On Multiprocessors

Author:

Amestoy Patrick R.1,Duff lain S.1

Affiliation:

1. CERFACS, TOULOUSE, FRANCE AND RUTHERFORD APPLETON LABORATORY OXON, ENGLAND

Abstract

This article addresses the problems of memory man agement in a parallel sparse matrix factorization based on a multifrontal approach. We describe how we have adapted and modified the ideas of Duff and Reid used in a sequential symmetric multifrontal method to de sign an efficient memory management scheme for parallel sparse matrix factorization. With our solution, using the minimum size of the working area to run the multifrontal method on a multiprocessor, we can ex ploit only a part of the parallelism of the method. If we slightly increase the size of the working space, then most of the potential parallelism of the method can be exploited. We have designed a flexible memory man agement scheme which adapts well to a variation in the size of the working area and/or the number of pro cessors. General parallel applications can always be represented in terms of a computational graph, which is effectively the underlying structure of a parallel mul tifrontal method. Therefore, we believe that the tech niques presented here are useful when designing an efficient memory management scheme for a wider range of parallel applications.

Publisher

SAGE Publications

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3