Epidemic failure detection and consensus for extreme parallelism

Author:

Katti Amogh1,Di Fatta Giuseppe1,Naughton Thomas2,Engelmann Christian2

Affiliation:

1. Department of Computer Science, University of Reading, UK

2. Computer Science and Mathematics Division, Oak Ridge National Laboratory, USA

Abstract

Future extreme-scale high-performance computing systems will be required to work under frequent component failures. The MPI Forum’s User Level Failure Mitigation proposal has introduced an operation, MPI_Comm_shrink, to synchronize the alive processes on the list of failed processes, so that applications can continue to execute even in the presence of failures by adopting algorithm-based fault tolerance techniques. This MPI_Comm_shrink operation requires a failure detection and consensus algorithm. This paper presents three novel failure detection and consensus algorithms using Gossiping. Stochastic pinging is used to quickly detect failures during the execution of the algorithm, failures are then disseminated to all the fault-free processes in the system and consensus on the failures is detected using the three consensus techniques. The proposed algorithms were implemented and tested using the Extreme-scale Simulator. The results show that the stochastic pinging detects all the failures in the system. In all the algorithms, the number of Gossip cycles to achieve global consensus scales logarithmically with system size. The second algorithm also shows better scalability in terms of memory and network bandwidth usage and a perfect synchronization in achieving global consensus. The third approach is a three-phase distributed failure detection and consensus algorithm and provides consistency guarantees even in very large and extreme-scale systems while at the same time being memory and bandwidth efficient.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. To improve scalability with Boolean matrix using efficient gossip failure detection and consensus algorithm for PeerSim simulator in IoT environment;International Journal of Information Technology;2022-05-24

2. MATCH: An MPI Fault Tolerance Benchmark Suite;2020 IEEE International Symposium on Workload Characterization (IISWC);2020-10

3. MARBLE: A Multi-GPU Aware Job Scheduler for Deep Learning on HPC Systems;2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID);2020-05

4. Reinit$$^{++}$$: Evaluating the Performance of Global-Restart Recovery Methods for MPI Fault Tolerance;Lecture Notes in Computer Science;2020

5. Robust Epidemic Aggregation Under Churn;Internet and Distributed Computing Systems;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3