Machine learned domain decomposition scheme applied to parallel multi-scale muscle simulation

Author:

Ivanović Miloš1,Kaplarević-Mališić Ana1,Stojanović Boban1,Svičević Marina1,Mijailovich Srboljub M2

Affiliation:

1. Faculty of Science, University of Kragujevac, Kragujevac, Serbia

2. Department of Biology, Illinois Institute of Technology, Chicago, USA

Abstract

Since multi-scale models of muscles rely on the integration of physical and biochemical properties across multiple length and time scales, they are highly processor and memory intensive. Consequently, their practical implementation and usage in real-world applications is limited by high computational requirements. There are various reported solutions to the problem of parallel computation of various multi-scale models, but due to their inherent complexity, load balancing remains a challenging task. In this article, we present a novel load balancing method for multi-scale simulations based on finite element (FE) method. The method employs a computationally simple single-scale model and machine learning in order to predict computational weights of the integration points within a complex multi-scale model. Employing the obtained weights, it is possible to improve the domain decomposition prior to the complex multi-scale simulation run and consequently reduce computation time. The method is applied to a two-scale muscle model, where the FE on macroscale is coupled with Huxley’s model of cross-bridge kinetics on the microscale. Our massive parallel solution is based on the static domain decomposition policy and operates in a heterogeneous (central processing units + graphics processing units) environment. The approach has been verified on a real-world example of the human tongue, showing high utilization of all processors and ensuring high scalability, owing to the proposed load balancing scheme. The performance analysis shows that the inclusion of the prediction of the computational weights reduces execution time by about 40% compared to the run which uses a trivial load balancer which assumes identical computational weights of all micro-models. The proposed domain decomposition approach possesses a high capability to be applied in a variety of multi-scale models based on the FE method.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3