Study on progress threads placement and dedicated cores for overlapping MPI nonblocking collectives on manycore processor

Author:

Denis Alexandre1ORCID,Jaeger Julien2,Jeannot Emmanuel1,Pérache Marc2,Taboada Hugo2

Affiliation:

1. Inria, LaBRI, CNRS, University of Bordeaux, Bordeaux-INP, France

2. CEA, DAM, DIF, Arpajon, France

Abstract

To amortize the cost of MPI collective operations, nonblocking collectives have been proposed so as to allow communications to be overlapped with computation. Unfortunately, collective communications are more CPU-hungry than point-to-point communications and running them in a communication thread on a dedicated CPU core makes them slow. On the other hand, running collective communications on the application cores leads to no overlap. In this article, we propose placement algorithms for progress threads that do not degrade performance when running on cores dedicated to communications to get communication/computation overlap. We first show that even simple collective operations, such as those based on a chain topology, are not straightforward to make progress in background on a dedicated core. Then, we propose an algorithm for tree-based collective operations that splits the tree between communication cores and application cores. To get the best of both worlds, the algorithm runs the short but heavy part of the tree on application cores, and the long but narrow part of the tree on one or several communication cores, so as to get a trade-off between overlap and absolute performance. We provide a model to study and predict its behavior and to tune its parameters. We implemented both algorithms in the multiprocessor computing framework, which is a thread-based MPI implementation. We have run benchmarks on manycore processors such as the KNL and Skylake and get good results for both performance and overlap.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3