Finding the forest in the trees: Enabling performance optimization on heterogeneous architectures through data science analysis of ensemble performance data

Author:

Pearce Olga12ORCID,Brink Stephanie1ORCID

Affiliation:

1. Lawrence Livermore National Laboratory, Livermore, CA, USA

2. College Station, Texas A and M University, San Marcos, TX, USA

Abstract

In this work, we develop novel data science methodologies for ensemble performance data that have the potential to uncover orders of magnitude of performance that is unknowingly being left on the table. Building on years of successful performance tool design and tool integration into million-line codes at Lawrence Livermore National Laboratory (Caliper ( Boehme et al. 2016 ), Hatchet ( Bhatele et al. 2019 ; Brink et al. 2020 ))—successes highlighted as key deliverables in meeting LLNL’s L1 and L2 milestones ( Rieben and Weiss 2020 )—we design a data science methodology for integrating multi-dimensional, multi-scale, multi-architecture, and multi-tool performance data, and provide data analytics and interactive visualization capabilities for further analysis and exploration of the data. Our work provides developers with a comprehensive multi-dimensional performance landscape, enabling enhanced capabilities for pinpointing performance bottlenecks on emerging hardware platforms composed of heterogeneous elements.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3