Scalable critical-path analysis and optimization guidance for hybrid MPI-CUDA applications

Author:

Schmitt Felix1,Dietrich Robert1,Juckeland Guido1

Affiliation:

1. Center for Information Services and High Performance Computing (ZIH), Technische Universität Dresden, Germany

Abstract

The use of accelerators in heterogeneous systems is an established approach in designing petascale applications. Today, Compute Unified Device Architecture (CUDA) offers a rich programming interface for GPU accelerators but requires developers to incorporate several layers of parallelism on both the CPU and the GPU. From this increasing program complexity emerges the need for sophisticated performance tools. This work contributes by analyzing hybrid MPI-CUDA programs for properties based on wait states, such as the critical path, a metric proven to identify application bottlenecks effectively. We developed a tool to construct a dependency graph based on an execution trace and the inherent dependencies of the programming models CUDA and Message Passing Interface (MPI). Thereafter, it detects wait states and attributes blame to responsible activities. Together with the property of being on the critical path, we can identify activities that are most viable for optimization. To evaluate the global impact of optimizations to critical activities, we predict the program execution using a graph-based performance projection. The developed approach has been demonstrated with suitable examples to be both scalable and correct. Furthermore, we establish a new categorization of CUDA inefficiency patterns ensuing from the dependencies between CUDA activities.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Graph-Centric Performance Analysis for Large-Scale Parallel Applications;IEEE Transactions on Parallel and Distributed Systems;2024-07

2. An Empirical Study of High Performance Computing (HPC) Performance Bugs;2023 IEEE/ACM 20th International Conference on Mining Software Repositories (MSR);2023-05

3. Domain-Specific Framework for Performance Analysis;Performance Analysis of Parallel Applications for HPC;2023

4. Visualization of profiling and tracing in CPU‐GPU programs;Concurrency and Computation: Practice and Experience;2022-07-19

5. PerFlow;Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming;2022-03-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3