BenchFriend

Author:

Che Shuai12,Skadron Kevin3

Affiliation:

1. AMD Research, CA, USA

2. Most of this work was completed while Shuai Che was with the University of Virginia

3. Department of Computer Science, University of Virginia, USA

Abstract

Graphics processing units (GPUs) have become an important platform for general-purpose computing, thanks to their high parallel throughput and high memory bandwidth. GPUs present significantly different architectures from CPUs and require specific mappings and optimizations to achieve high performance. This makes GPU workloads demonstrate application characteristics different from those of CPU workloads. It is critical for researchers to understand the first-order metrics that most influence GPU performance and scalability. Furthermore, methodologies and associated tools are needed to analyze and predict the performance of GPU applications and help guide users’ purchasing decisions. In this work, we study the approach of predicting the performance of GPU applications by correlating them to existing workloads. One tenet of benchmark design, also a motivation of this paper, is that users should be given the capability to leverage standard workloads to infer the performance of applications of their interest. We first identify a set of important GPU application characteristics and then use them to predict performance of an arbitrary application by determining its most similar proxy benchmarks. We demonstrate the prediction methodology and conduct predictions with benchmarks from different suites to achieve better workload coverage. The experimental results show that we are able to achieve satisfactory performance predictions, although errors are higher for outlier applications. Finally, we discuss several considerations for systematically constructing future benchmark suites.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Turbomachinery GPU Accelerated CFD: An Insight into Performance;Computation;2024-03-11

2. Predicting How CNN Training Time Changes on Various Mini-Batch Sizes by Considering Convolution Algorithms and Non-GPU Time;Proceedings of the 2021 on Performance EngineeRing, Modelling, Analysis, and VisualizatiOn STrategy;2021-06-21

3. Approximate Cache in GPGPUs;ACM Transactions on Embedded Computing Systems;2020-09-30

4. A mechanism for balancing accuracy and scope in cross-machine black-box GPU performance modeling;The International Journal of High Performance Computing Applications;2020-06-03

5. A Performance Model for GPU Architectures that Considers On-Chip Resources: Application to Medical Image Registration;IEEE Transactions on Parallel and Distributed Systems;2019-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3