Collective input/output under memory constraints

Author:

Lu Yin1,Chen Yong1,Zhuang Yu1,Liu Jialin1,Thakur Rajeev2

Affiliation:

1. Computer Science Department, Texas Tech University, USA

2. Mathematics and Computer Science Division, Argonne National Laboratory, USA

Abstract

Compared with current high-performance computing (HPC) systems, exascale systems are expected to have much less memory per node, which can significantly reduce necessary collective input/output (I/O) performance. In this study, we introduce a memory-conscious collective I/O strategy that takes into account memory capacity and bandwidth constraints. The new strategy restricts aggregation data traffic within disjointed subgroups, coordinates I/O accesses in intranode and internode layers, and determines I/O aggregators at run time considering memory consumption among processes. We have prototyped the design and evaluated it with commonly used benchmarks to verify its potential. The evaluation results demonstrate that this strategy holds promise in mitigating the memory pressure, alleviating the contention for memory bandwidth, and improving the I/O performance for projected extreme-scale systems. Given the importance of supporting increasingly data-intensive workloads and projected memory constraints on increasingly larger scale HPC systems, this new memory-conscious collective I/O can have a significant positive impact on scientific discovery productivity.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RackMem;Proceedings of the ACM International Conference on Parallel Architectures and Compilation Techniques;2020-09-30

2. Concurrent Dynamic Memory Coalescing on GoblinCore-64 Architecture;Proceedings of the Second International Symposium on Memory Systems;2016-10-03

3. Hierarchical Collective I/O Scheduling for High-Performance Computing;Big Data Research;2015-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3