A Survey of Graph Comparison Methods with Applications to Nondeterminism in High-Performance Computing

Author:

Bhowmick Sanjukta1,Bell Patrick2,Taufer Michela2ORCID

Affiliation:

1. University of Northern Texas, Denton, TX, USA

2. University of Tennessee Knoxville College of Engineering, Knoxville, TN, USA

Abstract

The convergence of extremely high levels of hardware concurrency and the effective overlap of computation and communication in asynchronous executions has resulted in increasing nondeterminism in High-Performance Computing (HPC) applications. Nondeterminism can manifest at multiple levels: from low-level communication primitives to libraries to application-level functions. No matter its source, nondeterminism can drastically increase the cost of result reproducibility, debugging workflows, testing parallel programs, or ensuring fault-tolerance. Nondeterministic executions of HPC applications can be modeled as event graphs, and the applications’ nondeterministic behavior can be understood and, in some cases, mitigated using graph comparison algorithms. However, a connection between graph comparison algorithms and approaches to understanding nondeterminism in HPC still needs to be established. This survey article moves the first steps toward establishing a connection between graph comparison algorithms and nondeterminism in HPC with its three contributions: it provides a survey of different graph comparison algorithms and a timeline for each category’s significant works; it discusses how existing graph comparison methods do not fully support properties needed to understand nondeterministic patterns in HPC applications; and it presents the open challenges that should be addressed to leverage the power of graph comparisons for the study of nondeterminism in HPC applications.

Funder

United States National Science Foundation

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3