Refining HPCToolkit for application performance analysis at exascale

Author:

Adhianto Laksono1ORCID,Anderson Jonathon1ORCID,Barnett Robert Matthew1ORCID,Grbic Dragana1ORCID,Indic Vladimir2ORCID,Krentel Mark1ORCID,Liu Yumeng1ORCID,Milaković Srđan1ORCID,Phan Wileam1ORCID,Mellor-Crummey John1ORCID

Affiliation:

1. Department of Computer Science, Rice University, Houston, TX, USA

2. Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia

Abstract

As part of the US Department of Energy’s Exascale Computing Project (ECP), Rice University has been refining its HPCToolkit performance tools to better support measurement and analysis of applications executing on exascale supercomputers. To efficiently collect performance measurements of GPU-accelerated applications, HPCToolkit employs novel non-blocking data structures to communicate performance measurements between tool threads and application threads. To attribute performance information in detail to source lines, loop nests, and inlined call chains, HPCToolkit performs parallel analysis of large CPU and GPU binaries involved in the execution of an exascale application to rapidly recover mappings between machine instructions and source code. To analyze terabytes of performance measurements gathered during executions at exascale, HPCToolkit employs distributed-memory parallelism, multithreading, sparse data structures, and out-of-core streaming analysis algorithms. To support interactive exploration of profiles up to terabytes in size, HPCToolkit’s hpcviewer graphical user interface uses out-of-core methods to visualize performance data. The result of these efforts is that HPCToolkit now supports collection, analysis, and presentation of profiles and traces of GPU-accelerated applications at exascale. These improvements have enabled HPCToolkit to efficiently measure, analyze and explore terabytes of performance data for executions using as many as 64K MPI ranks and 64K GPU tiles on ORNL’s Frontier supercomputer. HPCToolkit’s support for measurement and analysis of GPU-accelerated applications has been employed to study a collection of open-science applications developed as part of ECP. This paper reports on these experiences, which provided insight into opportunities for tuning applications, strengths and weaknesses of HPCToolkit itself, as well as unexpected behaviors in executions at exascale.

Funder

Lawrence Livermore National Laboratory

Argonne National Laboratory

Office of Science

Total Energies E&P Research & Technology USA, LLC

Advanced Micro Devices

National Nuclear Security Administration

Intel Corporation

Publisher

SAGE Publications

Reference75 articles.

1. Abadi M, Agarwal A, Barham P, et al. (2015) TensorFlow: large-scale machine learning on heterogeneous systems. https://www.tensorflow.org/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3