Self-Organizing Scheduling on the Organic Grid

Author:

Chakravarti Arjav J.1,Baumgartner Gerald2,Lauria Mario3

Affiliation:

1. THE MATHWORKS, INC. NATICK, MA, USA

2. DEPARTMENT OF COMPUTER SCIENCE LOUISIANA STATE UNIVERSITY, LA, USA

3. DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING OHIO STATE UNIVERSITY, OH, USA ()

Abstract

The Organic Grid is a biologically inspired and fully decentralized approach to the organization of computation that is based on the autonomous scheduling of strongly mobile agents on a peer-to-peer network. Through the careful design of agent behavior, the emerging organization of the computation can be customized for different classes of applications. In this paper, we report on our experience in adapting the general framework to run two representative applications on our Organic Grid prototype: the National Center for Biotechnology Information (NCBI) basic local alignment search tool (BLAST) code for sequence alignment, and the Cannon's algorithm for matrix multiplication. The first is an example of independent task application, a type of application commonly used for grid scheduling research because of its easily decomposable nature and absence of intra-node communication. The second is a popular block algorithm for parallel matrix multiplication, and represents a challenging application for grid platforms because of its highly structured and synchronous communication pattern. Agent behavior completely determines the way computation is organized on the Organic Grid. We intentionally chose two applications at opposite ends of the distributed computing spectrum having very different requirements in terms of communication topology, resource use, and response to faults. We detail the design of the agent behavior and show how the different requirements can be satisfied. By encapsulating application code and scheduling functionality into mobile agents, we decouple both computation and scheduling from the underlying grid infrastructure. In the resulting system, every node can inject a computation onto the grid; the computation naturally organizes itself around available resources.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scheduling Many-Task Applications on Multi-clouds and Hybrid Clouds;Asynchronous Many-Task Systems and Applications;2023

2. Latency-based Vector Scheduling of Many-task Applications for a Hybrid Cloud;2022 IEEE 15th International Conference on Cloud Computing (CLOUD);2022-07

3. A Vector-Scheduling Approach for Running Many-Task Applications in the Cloud;Lecture Notes in Computer Science;2018

4. A Hybrid Cloud Framework for Scientific Computing;2015 IEEE 8th International Conference on Cloud Computing;2015-06

5. Adaptive Self-Organization in Distributed Tree Topologies;International Journal of Distributed Systems and Technologies;2014-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3