An Efficient Parallel Algorithm for Extreme Eigenvalues of Sparse Nonsymmetric Matrices

Author:

Kim S. K.1,Chrortopoulos A. T.1

Affiliation:

1. Department of Computer Science University of Minnesota Minneapolis, Minnesota 55455

Abstract

Main memory accesses for shared-memory systems or global communications (synchronizations) in message passing systems decrease the computation speed. In this paper, the standard Arnoldi algorithm for approximating a small number of eigenvalues, with largest (or smallest) real parts for nonsymmetric large sparse matrices, is restructured so that only one synchronization point is required; that is, one global communication in a message passing distributed-memory machine or one global memory sweep in a shared-memory machine per each iteration is required. We also introduce an s-step Arnoldi method for finding a few eigenvalues of nonsymmetric large sparse matrices. This method generates reduction matrices that are similar to those generated by the standard method. One iteration of the s-step Arnoldi algorithm corresponds to s iterations of the standard Arnoldi algorithm. The s-step method has improved data locality, minimized global communication, and superior parallel properties. These algorithms are implemented on a 64-node NCUBE/7 Hypercube and a CRAY-2, and performance results are presented.

Publisher

SAGE Publications

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Normalized Newton method to solve generalized tensor eigenvalue problems;Numerical Linear Algebra with Applications;2024-01-09

2. Low-synch Gram–Schmidt with delayed reorthogonalization for Krylov solvers;Parallel Computing;2022-09

3. Randomized Gram--Schmidt Process with Application to GMRES;SIAM Journal on Scientific Computing;2022-06

4. Block Gram-Schmidt algorithms and their stability properties;Linear Algebra and its Applications;2022-04

5. Low synchronization Gram–Schmidt and generalized minimal residual algorithms;Numerical Linear Algebra with Applications;2020-10-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3