Performance and Scalability Evaluation of ‘Big Memory’ on Blue Gene Linux

Author:

Yoshii Kazutomo1,Iskra Kamil2,Naik Harish2,Beckman Pete3,Broekema P. Chris4

Affiliation:

1. Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA,

2. Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA

3. Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA, Leadership Computing Facility, Argonne National Laboratory, Argonne, IL, USA

4. ASTRON, Netherlands Institute for Radio Astronomy, Dwingeloo, The Netherlands

Abstract

We address memory performance issues observed in Blue Gene Linux and discuss the design and implementation of ‘Big Memory’——an alternative, transparent memory space introduced to eliminate the memory performance issues. We evaluate the performance of Big Memory using custom memory benchmarks, NAS Parallel Benchmarks, and the Parallel Ocean Program, at a scale of up to 4,096 nodes. We find that Big Memory successfully resolves the performance issues normally encountered in Blue Gene Linux. For the ocean simulation program, we even find that Linux with Big Memory provides better scalability than does the lightweight compute node kernel designed solely for high-performance applications. Originally intended exclusively for compute node tasks, our new memory subsystem dramatically improves the performance of certain I/O node applications as well. We demonstrate this performance using the central processor of the LOw Frequency ARray radio telescope as an example.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ZeptoOS;Operating Systems for Supercomputers and High Performance Computing;2019

2. Cobalt: A GPU-based correlator and beamformer for LOFAR;Astronomy and Computing;2018-04

3. Energy-efficient data transfers in radio astronomy with software UDP RDMA;Future Generation Computer Systems;2018-02

4. Analyzing System Calls in Multi-OS Hierarchical Environments;Proceedings of the 5th International Workshop on Runtime and Operating Systems for Supercomputers;2015-06-16

5. A radio detection system for cosmic observations;Astronomy & Geophysics;2015-01-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3