Cache-optimized and low-overhead implementations of additive Schwarz methods for high-order FEM multigrid computations

Author:

Munch Peter1ORCID,Kronbichler Martin12ORCID

Affiliation:

1. High-Performance Scientific Computing, University of Augsburg, Augsburg, Germany

2. Applied Numerics, Faculty of Mathematics, Ruhr University Bochum, Bochum, Germany

Abstract

This contribution presents data-locality optimizations of the additive Schwarz method (ASM) based on the fast-diagonalization method defined on overlapping cell-centric and vertex-star patches in the context of high-order matrix-free finite-element computations on modern CPU-based hardware. The developments are guided by detailed performance models of the ASM in the context of Chebyshev iterations when used as smoothers for p-multigrid. The proposed efficient implementation of ASM adopts concepts known from cell-loop infrastructures for efficient operator evaluation, in particular, the storage of information per geometric entity and the cache-friendly interleaving of cell loops and vector updates as a means to increase data locality. We use the latter concept for both applying the weights required by ASM and performing the vector updates required by the Chebyshev iteration, which are memory-bound operations with non-negligible costs in comparison to efficient operator evaluation. Furthermore, the solution of a scalar Poisson problem on a highly anisotropic and an unstructured mesh with p-multigrid using the developed smoothers indicates that efficient implementations of the additive Schwarz method can outperform optimized point-Jacobi preconditioners already for simple problems despite being more than twice as expensive per iteration. Even though ASM introduces additional communication steps per smoother application, the reduced number of iterations can lead to improved parallel scalability for intermediate problem sizes. At the scaling limit, the results are inconclusive due to these two opposing effects.

Funder

Bayerisches Kompetenznetzwerk für Technisch-Wissenschaftliches Hoch-und Höchstleistungsrechnen

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploiting mesh structure to improve multigrid performance for saddle-point problems;The International Journal of High Performance Computing Applications;2024-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3