Affiliation:
1. COMPUTER SCIENCE DIVISION, UNIVERSITY OF CALIFORNIA AT BERKELEY,
, LAWRENCE BERKELEY NATIONAL LABORATORY,
2. COMPUTER SCIENCE DIVISION, UNIVERSITY OF CALIFORNIA AT BERKELEY
3. LAWRENCE BERKELEY NATIONAL LABORATORY
Abstract
We describe the rationale behind the design of key features of Titanium—an explicitly parallel dialect of Java for high-performance scientific programming—and our experiences in building applications with the language. Specifically, we address Titanium's partitioned global address space model, single program multiple data parallelism support, multi-dimensional arrays and array-index calculus, memory management, immutable classes (class-like types that are value types rather than reference types), operator overloading, and generic programming. We provide an overview of the Titanium compiler implementation, covering various parallel analyses and optimizations, Titanium runtime technology and the GASNet network communication layer. We summarize results and lessons learned from implementing the NAS parallel benchmarks, elliptic and hyperbolic solvers using adaptive mesh refinement, and several applications of the immersed boundary method.
Subject
Hardware and Architecture,Theoretical Computer Science,Software
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献