Enabling efficient execution of a variational data assimilation application

Author:

Dennis John M1ORCID,Baker Allison H1ORCID,Dobbins Brian1ORCID,Bell Michael M2,Sun Jian1ORCID,Kim Youngsung3,Cha Ting-Yu2ORCID

Affiliation:

1. National Center for Atmospheric Research, Boulder, CO, USA

2. Colorado State University, Fort Collins, CO, USA

3. Oak Ridge National Laboratory, Oak Ridge, TN, USA

Abstract

Remote sensing observational instruments are critical for better understanding and predicting severe weather. Observational data from such instruments, such as Doppler radar data, for example, are often processed for assimilation into numerical weather prediction models. As such instruments become more sophisticated, the amount of data to be processed grows and requires efficient variational analysis tools. Here we examine the code that implements the popular SAMURAI (Spline Analysis at Mesoscale Utilizing Radar and Aircraft Instrumentation) technique for estimating the atmospheric state for a given set of observations. We employ a number of techniques to significantly improve the code’s performance, including porting it to run on standard HPC clusters, analyzing and optimizing its single-node performance, implementing a more efficient nonlinear optimization method, and enabling the use of GPUs via OpenACC. Our efforts thus far have yielded more than 100x improvement over the original code on large test problems of interest to the community.

Funder

Office of the Director

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Reference20 articles.

1. Balay S, Abhyankar S, Adams MF, et al. (2019) PETSc Web page. https://www.mcs.anl.gov/petsc

2. PETSc Users Manual (Rev. 3.13)

3. Air–Sea Enthalpy and Momentum Exchange at Major Hurricane Wind Speeds Observed during CBLAST

4. Retrieved Thermodynamic Structure of Hurricane Rita (2005) from Airborne Multi–Doppler Radar Data

5. Computational and Information Systems Laboratory (2017) Cheyenne: SGI ICE XA Cluster. DOI:10.5065/d6rx99hx. DOI: 10.5065/D6RX99HX.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Portable and Efficient Lagrangian Particle Capability for Idealized Atmospheric Phenomena;Proceedings of the Platform for Advanced Scientific Computing Conference;2024-06-03

2. Variational Data Assimilation Method Using Parallel Dual Populations Particle Swarm Optimization Algorithm;Wuhan University Journal of Natural Sciences;2024-02

3. Three-Dimensional Variational Multi-Doppler Wind Retrieval over Complex Terrain;Journal of Atmospheric and Oceanic Technology;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3