Versatile software-defined HPC and cloud clusters on Alps supercomputer for diverse workflows

Author:

Alam Sadaf R1ORCID,Gila Miguel2,Klein Mark2,Martinasso Maxime2ORCID,Schulthess Thomas C23

Affiliation:

1. University of Bristol, Bristol, UK

2. Swiss National Supercomputing Centre, Lugano, Switzerland

3. ETH Zurich, Swiss National Supercomputing Centre, Lugano, Switzerland

Abstract

Supercomputers have been driving innovations for performance and scaling benefiting several scientific applications for the past few decades. Yet their ecosystems remain virtually unchanged when it comes to integrating distributed data-driven workflows, primarily due to rather rigid access methods and restricted configuration management options. X-as-a-Service model of cloud has introduced, among other features, a developer-centric DevOps approach empowering developers of infrastructure, platform to software artefacts, which, unfortunately contemporary supercomputers still lack. We introduce vClusters (versatile software-defined clusters), which is based on Infrastructure-as-code (IaC) technology. vClusters approach is a unique fusion of HPC and cloud technologies resulting in a software-defined, multi-tenant cluster on a supercomputing ecosystem, that, together with software-defined storage, enable DevOps for complex, data-driven workflows like grid middleware, alongside a classic HPC platform. IaC has been a commonplace in cloud computing, however, it lacked adoption within multi-Petascale ecosystems due to concerns related to performance and interoperability with classic HPC data centres’ ecosystems. We present an overview of the Swiss National Supercomputing Centre’s flagship Alps ecosystem as an implementation target for vClusters for HPC and data-driven workflows. Alps is based on the Cray-HPE Shasta EX supercomputing platform that includes an IaC compliant, microservices architecture (MSA) management system, which we leverage for demonstrating vClusters usage for our diverse operational workflows. We provide implementation details of two operational vClusters platforms: a classic HPC platform that is used predominantly by hundreds of users running thousands of large-scale numerical simulations batch jobs; and a widely used, data-intensive, Grid computing middleware platform used for CERN Worldwide LHC Computing Grid (WLCG) operations. The resulting solution showcases reuse and reduction of common configuration recipes across vCluster implementations, minimising operational change management overheads while introducing flexibility for managing artefacts for DevOps required by diverse workflows.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Reference49 articles.

1. ARC middleware. Available at: https://github.com/nordugrid/arc (accessed 13 March 2023).

2. CSCS Alps. CSCS introduction to Alps. Available at: https://www.cscs.ch/computers/alps (accessed 13 March 2023).

3. Artifactory. Artifactory - universal artifact repository manager. Available at: https://jfrog.com (accessed 13 March 2023).

4. AWS ParallelCluster. AWS ParallelCluster. Available at: https://aws.amazon.com/hpc/parallelcluster/(accessed 13 March 2023).

5. Azure CycleCloud. Azure CycleCloud. Available at: https://learn.microsoft.com/en-us/azure/cyclecloud (accessed 13 March 2023).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3