Ultrasonic pulse propagation simulation using OpenCL for environment mapping and discovery

Author:

Al-Shorman Mohammad Y1ORCID,Al-Kofahi Majd M2

Affiliation:

1. Department of Physics, Yarmouk University, Irbid, Jordan

2. Department of Computer Information Science, Higher Colleges of Technology, Ras Al Khaimah, UAE

Abstract

A fast, highly parallelized, simulation of unidirectional ultrasonic pulse propagating in a two-dimensional environment is presented. The pulse intensity versus time is recorded using an array of unidirectional ultrasonic receivers located at known locations and arranged in a small circle around the transmitter. To speed up the simulation process, OpenCL 2.0 heterogeneous compute language on a graphics processing unit is used. The simulation result is then compared with experimental data to validate its accuracy. By comparing both simulated and experimental data, the collected intensity–time profiles can be used to map an environment. Environments can be mapped using not only direct reflections but also higher order reflections from objects that are not directly seen by the transmitter. With the help of this simulation, subtle characteristics in an environment, such as a slight tilt or curvature, can be measured. The front end of the simulation is written using C#, while the back end is written using C\C++ and OpenCL.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Image Sobel edge extraction algorithm accelerated by OpenCL;The Journal of Supercomputing;2022-05-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3