Data-intensive science: The Terapixel and MODISAzure projects

Author:

Agarwal Deb1,Cheah You-Wei2,Fay Dan3,Fay Jonathan3,Guo Dean3,Hey Tony4,Humphrey Marty5,Jackson Keith1,Jie Li 5,Poulain Christophe3,Ryu Youngryel6,van Ingen Catharine3

Affiliation:

1. Lawrence Berkeley National Lab, USA

2. School of Informatics and Computing, Indiana University, USA

3. Microsoft Research, USA

4. Microsoft Research, USA,

5. Department of Computer Science, University of Virginia, USA

6. Department of Organismic and Evolutionary Biology, Harvard University, USA

Abstract

We live in an era in which scientific discovery is increasingly driven by data exploration of massive datasets. Scientists today are envisioning diverse data analyses and computations that scale from the desktop to supercomputers, yet often have difficulty designing and constructing software architectures to accommodate the heterogeneous and often inconsistent data at scale. Moreover, scientific data and computational resource needs can vary widely over time. The needs grow as the science collaboration broadens or as additional data is accumulated; the computational demand can have large transients in response to seasonal field campaigns or new instrumentation breakthroughs. Cloud computing can offer a scalable, economic, on-demand model that is well matched to some of these evolving science needs. This paper presents two of our experiences over the last year — the Terapixel Project, using workflow, high-performance computing and non-structured query language data processing to render the largest astronomical image for the WorldWide Telescope, and MODISAzure, a science pipeline for image processing, deployed using the Azure Cloud infrastructure.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3