Employing MPI_T in MPI Advisor to optimize application performance

Author:

Gallardo Esthela1,Vienne Jérôme2,Fialho Leonardo2,Teller Patricia1,Browne James2

Affiliation:

1. The University of Texas at El Paso, TX, USA

2. Texas Advanced Computing Center, Austin, TX, USA

Abstract

MPI_T, the MPI Tool Information Interface, was introduced in the MPI 3.0 standard with the aim of enabling the development of more effective tools to support the Message Passing Interface (MPI), a standardized and portable message-passing system that is widely used in parallel programs. Most MPI optimization tools do not yet employ MPI_T and only describe the interactions between an application and an MPI library, thus requiring that users have expert knowledge to translate this information into optimizations. In contrast, MPI Advisor, a recently developed, easy-to-use methodology and tool for MPI performance optimization, pioneered the use of information provided by MPI_T to characterize the communication behaviors of an application and identify an MPI configuration that may enhance application performance. In addition to enabling the recommendation of performance optimizations, MPI_T has the potential to enable automatic runtime application of these optimizations. Optimization of MPI configurations is important because: (1) the vast majority of parallel applications executed on high-performance computing clusters use MPI for communication among processes, (2) most users execute their programs using the cluster’s default MPI configuration, and (3) while default configurations may give adequate performance, it is well known that optimizing the MPI runtime environment can significantly improve application performance, in particular, when the way in which the application is executed and/or the application’s input changes. This paper provides an overview of MPI_T, describes how it can be used to develop more effective MPI optimization tools, and demonstrates its use within an extended version of MPI Advisor. In doing the latter, it presents several MPI configuration choices that can significantly impact performance, shows how use of information collected at runtime with MPI_T and PMPI can be used to enhance performance, and presents MPI Advisor case studies of these configuration optimizations with performance gains of up to 40%.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3