Multi-core and many-core shared-memory parallel raycasting volume rendering optimization and tuning

Author:

Bethel E Wes1,Howison Mark2

Affiliation:

1. Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

2. Center for Computation and Visualization, Brown University, Providence, RI, USA

Abstract

Given the computing industry trend of increasing processing capacity by adding more cores to a chip, the focus of this work is tuning the performance of a staple visualization algorithm, raycasting volume rendering, for shared-memory parallelism on multi-core CPUs and many-core GPUs. Our approach is to vary tunable algorithmic settings, along with known algorithmic optimizations and two different memory layouts, and measure performance in terms of absolute runtime and L2 memory cache misses. Our results indicate there is a wide variation in runtime performance on all platforms, as much as 254% for the tunable parameters we test on multi-core CPUs and 265% on many-core GPUs, and the optimal configurations vary across platforms, often in a non-obvious way. For example, our results indicate the optimal configurations on the GPU occur at a crossover point between those that maintain good cache utilization and those that saturate computational throughput. This result is likely to be extremely difficult to predict with an empirical performance model for this particular algorithm because it has an unstructured memory access pattern that varies locally for individual rays and globally for the selected viewpoint. Our results also show that optimal parameters on modern architectures are markedly different from those in previous studies run on older architectures. In addition, given the dramatic performance variation across platforms for both optimal algorithm settings and performance results, there is a clear benefit for production visualization and analysis codes to adopt a strategy for performance optimization through auto-tuning. These benefits will likely become more pronounced in the future as the number of cores per chip and the cost of moving data through the memory hierarchy both increase.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Virtual prototyping of complex optical systems on multiprocessor workstations;Optical Engineering;2022-12-07

2. The virtual prototyping of complex optical systems on multiprocessor workstations;Computational Optics 2021;2021-09-14

3. Scalar Field Comparison with Topological Descriptors: Properties and Applications for Scientific Visualization;Computer Graphics Forum;2021-06

4. On Evaluating Runtime Performance of Interactive Visualizations;IEEE Transactions on Visualization and Computer Graphics;2020-09-01

5. Pattern Learning Based Parallel Ant Colony Optimization;2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE International Conference on Ubiquitous Computing and Communications (ISPA/IUCC);2017-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3