High-performance atomistic modeling of optical thin films deposited by energetic processes

Author:

Grigoriev FV1,Sulimov AV1,Kochikov Igor1,Kondakova OA1,Sulimov VB1,Tikhonravov AV1

Affiliation:

1. Research Computing Center, M.V.Lomonosov Moscow State University, Russian Federation

Abstract

In this paper we present a computationally effective approach to classical molecular dynamic simulation of thin film growth with orientation on cluster supercomputing facilities. The goal of the developed approach is to investigate structural heterogeneities of thin films deposited on substrates at a nanoscale level. These heterogeneities depend on the experimental conditions of a deposition process being used. They have essential influence on practical properties of thin films and their modeling is important for achieving further progress in thin film optical technology. The presented research is focused on silicon dioxide thin films growth. A special force field, oriented on the atomistic description of the silicon dioxide deposition on fused silica substrate, has been developed and applied to the molecular dynamic simulation with the GROMACS package. The validity of the developed simulation approach is verified using atomic clusters consisting of up to 106 atoms and having characteristic dimensions of up to 30 nm. Its computational efficiency is tested using up to 2048 cores. The dependence of achievable efficiency on model parameters is discussed.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3