Non-smooth Bayesian optimization in tuning scientific applications

Author:

Luo Hengrui12ORCID,Cho Younghyun3ORCID,Demmel James W3,Kozachenko Igor3,Li Xiaoye S1ORCID,Liu Yang1ORCID

Affiliation:

1. Lawrence Berkeley National Laboratory, Berkeley, CA, USA

2. Department of Statistics, Rice University, Houston, TX, USA

3. Department of EECS, University of California, Berkeley, Berkeley, CA, USA

Abstract

Tuning algorithmic parameters to optimize the performance of large, complicated computational codes is an important problem involving finding the optima and identifying regimes defined by non-smooth boundaries in black-box functions. Within the Bayesian optimization framework, the Gaussian process surrogate model produces smooth mean functions, but functions in the tuning problem are often non-smooth, which is exacerbated by the fact that we usually have limited sequential samples from the black-box function. Motivated by these issues encountered in tuning, we propose a novel Gaussian process model called a clustered Gaussian process (cGP), where the components are dynamically updated by clustering. In our studies, the performance of cGP can be better than stationary GPs in nearly 90% of the experiments and better than non-stationary GPs in nearly 70% of the repeated experiments while requiring less computational cost. cGP provides a novel approach for dynamic GP, computes more efficiently than recursive partitioning, and discovers non-smoothness regimes. We provide extensive experiments including high-performance computing (HPC) and industrial simulation functions to show the effectiveness of our methods.

Funder

Exascale Computing Project

National Energy Research Scientific Computing Center NERSC

Publisher

SAGE Publications

Reference75 articles.

1. Adams RP, MacKay DJC (2007) Bayesian online changepoint detection. arXiv:0710.3742.

2. Time and energy modeling of high–performance Level-3 BLAS on x86 architectures

3. Quasi-regression

4. A Bayesian Analysis for Change Point Problems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3