Demystifying asynchronous I/O Interference in HPC applications

Author:

Tseng Shu-Mei1,Nicolae Bogdan2ORCID,Cappello Franck2,Chandramowlishwaran Aparna1

Affiliation:

1. EECS, University of California Irvine, California, USA

2. MCS, Argonne National Laboratory, Illinois, USA

Abstract

With increasing complexity of HPC workflows, data management services need to perform expensive I/O operations asynchronously in the background, aiming to overlap the I/O with the application runtime. However, this may cause interference due to competition for resources: CPU, memory/network bandwidth. The advent of multi-core architectures has exacerbated this problem, as many I/O operations are issued concurrently, thereby competing not only with the application but also among themselves. Furthermore, the interference patterns can dynamically change as a response to variations in application behavior and I/O subsystems (e.g. multiple users sharing a parallel file system). Without a thorough understanding, I/O operations may perform suboptimally, potentially even worse than in the blocking case. To fill this gap, this paper investigates the causes and consequences of interference due to asynchronous I/O on HPC systems. Specifically, we focus on multi-core CPUs and memory bandwidth, isolating the interference due to each resource. Then, we perform an in-depth study to explain the interplay and contention in a variety of resource sharing scenarios such as varying priority and number of background I/O threads and different I/O strategies: sendfile, read/write, mmap/write underlining trade-offs. The insights from this study are important both to enable guided optimizations of existing background I/O, as well as to open new opportunities to design advanced asynchronous I/O strategies.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multifacets of lossy compression for scientific data in the Joint-Laboratory of Extreme Scale Computing;Future Generation Computer Systems;2025-02

2. Scalable I/O aggregation for asynchronous multi-level checkpointing;Future Generation Computer Systems;2024-11

3. Concealing Compression-accelerated I/O for HPC Applications through In Situ Task Scheduling;Proceedings of the Nineteenth European Conference on Computer Systems;2024-04-22

4. Modeling Multi-Threaded Aggregated I/O for Asynchronous Checkpointing on HPC Systems;2023 22nd International Symposium on Parallel and Distributed Computing (ISPDC);2023-07

5. Conquering Noise With Hardware Counters on HPC Systems;2022 IEEE/ACM Workshop on Programming and Performance Visualization Tools (ProTools);2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3