A Compromised-Time-Cost Scheduling Algorithm in SwinDeW-C for Instance-Intensive Cost-Constrained Workflows on a Cloud Computing Platform

Author:

Ke Liu 1,Hai Jin 2,Jinjun Chen 3,Xiao Liu 3,Dong Yuan 3,Yun Yang 3

Affiliation:

1. School of Computer Science & Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China, Faculty of Information and Communication Technologies, Swinburne University of Technology, Hawthorn, Melbourne, Australia,

2. School of Computer Science & Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China

3. Faculty of Information and Communication Technologies, Swinburne University of Technology, Hawthorn, Melbourne, Australia

Abstract

The concept of cloud computing continues to spread widely, as it has been accepted recently. Cloud computing has many unique advantages which can be utilized to facilitate workflow execution. Instance-intensive cost-constrained cloud workflows are workflows with a large number of workflow instances (i.e. instance intensive) bounded by a certain budget for execution (i.e. cost constrained) on a cloud computing platform (i.e. cloud workflows). However, there are, so far, no dedicated scheduling algorithms for instance-intensive cost-constrained cloud workflows. This paper presents a novel compromised-time-cost scheduling algorithm which considers the characteristics of cloud computing to accommodate instance-intensive cost-constrained workflows by compromising execution time and cost with user input enabled on the fly. The simulation performed demonstrates that the algorithm can cut down the mean execution cost by over 15% whilst meeting the user-designated deadline or shorten the mean execution time by over 20% within the user-designated execution cost.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3