Dual tree traversal on integrated GPUs for astrophysical N-body simulations

Author:

Fortin Pierre12,Touche Maxime1

Affiliation:

1. Sorbonne Université, UPMC Univ Paris 06, CNRS, Laboratoire d’Informatique de Paris 6 (LIP6) UMR 7606, Paris, France

2. University of Lille, CNRS, Centrale Lille, CRIStAL UMR 9189, Lille, France

Abstract

In astrophysical N-body simulations, O( N) fast multipole methods (FMMs) with dual tree traversal (DTT) on multi-core CPUs are faster than O( N log N) CPU tree-codes but can still be outperformed by GPU ones. In this article, we aim at combining the best algorithm, namely FMM with DTT, with the most powerful hardware currently available, namely GPUs. In the astrophysical context requiring low accuracies and non-uniform particle distributions, we show that such combination can be achieved thanks to a hybrid CPU-GPU algorithm on integrated GPUs: while the DTT is performed on the CPU cores, the far- and near-field computations are all performed on the GPU cores. We show how to efficiently expose the interactions resulting from the DTT to the GPU cores, how to deploy both the far- and near-field computations on GPU, and how to overlap the parallel DTT on CPU with GPU computations. Based on the falcON code and using OpenCL on AMD Accelerated Processing Units and on Intel integrated GPUs, this first heterogeneous deployment of DTT for FMM outperforms standard multi-core CPUs and matches GPU and high-end CPU performance, being hence more cost- and power-efficient.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. N-Body Simulation Inspired by Metaheuristics Optimization;Computer Systems Science and Engineering;2022

2. Adaptive tiling for parallel N-body simulations on many core;Astronomy and Computing;2021-07

3. Fast Multipole Methods for N-body Simulations of Collisional Star Systems;The Astrophysical Journal;2021-07-01

4. A GPU-Accelerated Barycentric Lagrange Treecode;2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW);2020-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3